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Abstract—Mobile cloud computing is an emerging cloud computing paradigm that integrates cloud 

computing and mobile computing to enable many useful mobile applications. However, the large-scale 

deployment of mobile cloud computing is hindered by the concerns on possible privacy leakage. In this paper, 

we investigate the privacy issues in the ad hoc mobile cloud computing, and propose a framework that can 

protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential 

privacy and geo cast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without 

leaking their location information. We develop analytical models and task allocation strategies that balance 

privacy, utility, and system overhead in an ad hoc mobile cloud. We also conduct extensive experiments based 

on real-world datasets, and the results show that our framework can protect location privacy for mobile devices 

while providing effective services with low system overhead. 

Index Terms—Mobile cloud computing, location privacy, task allocation, reputation. 

1 INTRODUCTION 

NOWADAYS, mobile devices such as 

smartphones and tablets have gained tremendous 

popularity. These devices are often equipped with a 

variety of sensors such as camera, microphone, 

GPS, accelerometer, gyroscope, and compass. The 

data (e.g., position, speed, temperature, and heart 

rate) generated by these sensors enable many useful 

mobile applications, including location-based 

services [1], [2], mobile sensing [3], and mobile 

crowdsourcing [4], [5]. Although improved largely 

over the past several years, mobile devices are still 

resource-constrained mainly due to the limited 

battery lifetime. On the other hand, cloud 

computing has widely been regarded as the next-

generation computing paradigm which provides 

“unlimited” cloud resources to end-users in an on-

demand fashion. The rich cloud resources in cloud 

computing can be exploited to increase, enhance, 

and optimize capabilities of mobile devices, 

leading to the concept of mobile cloud computing 

(MCC). According to [6], MCC integrates cloud 

computing technologies with mobile devices to 

make the mobile devices more capable in terms of 

computational power, memory, storage, energy, 

and context awareness. There are generally two 

types of mobile clouds in MCC: infrastructure-

based and ad hoc [6]. The infrastructure-based 

mobile cloud consists of stationary computing 

resources and provides services to the mobile users 

via the Internet. Alternatively, in the ad hoc mobile 

cloud, a collection of mobile devices (hereafter 

referred to as “mobile servers”) performs as cloud 

resources and provides access to local or Internet-

based cloud services to other mobile users 

(hereafter referred to as “mobile clients”). In this 

paper, we focus on the second case, namely, the ad 

hoc mobile cloud. The main benefit of utilizing ad 

hoc mobile cloud resources is their distributed and 

context-awareness features. As explained in [7]–

[10], incentivized by the mobile cloud computing 

platform (CCP), individual mobile users contribute 

their mobile devices as mobile servers in the ad hoc 

mobile cloud, and these mobile servers can be used 

to perform location-dependent tasks such as 

epidemic monitoring, traffic monitoring, 

image/video capturing, and price checking for 

mobile clients. Despite many promising 

applications, ad hoc mobile clouds pose several 

challenges. First, mobile cloud resources in an ad 

hoc mobile cloud are dynamic and diverse. As a 

result, some mobile servers may drop the task they 

are performing and leave the cloud. Some mobile 

servers may be “spammers” that only want to 

collect rewards and submit arbitrary answers 
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without looking at the specific task. Moreover, 

some mobile servers may not be powerful enough 

to provide sensing data at the required accuracy. 

Therefore, how to allocate tasks to ensure the 

quality of the service provided by these dynamic 

mobile servers is challenging. Second, as pointed 

out by [7], security and privacy of mobile devices 

as service providers is a critical concern in the ad 

hoc mobile cloud. In order to allocate tasks and 

provide effective services, mobile servers in an ad 

hoc mobile cloud need to share their location data 

with the CCP, which could reveal a lot of personal 

information such as a user’s identity, health status, 

personal activities, and political views [11]. Hence, 

it is mandatory to provide privacy guarantee in 

order to engage more mobile devices in the cloud. 

Finally, there is an inherent conflict between 

quality of service (i.e., utility) and privacy in task 

allocation. If an ad hoc mobile cloud ensures 

privacy of mobile servers, it is difficult to 

guarantee the utility of their MCC service. Finding 

a solution that ensures privacy while guaranteeing 

utility for task allocation is a major challenge in 

such systems. Several solutions to privacy issues in 

mobile applications have been proposed. For 

example, aggregation is a common approach to 

hiding individual sensitive information when only 

statistics of users are required [12]. However, this 

approach only calculates statistics and thus cannot 

be used to select mobile servers in an ad hoc 

mobile cloud. Another approach is used in location-

based services, where accurate locations are 

obfuscated in location-based queries, and the 

service provider returns results based on the 

obfuscated query [13], [14]. In our scenario, 

however, the private information is no longer part 

of a location-based query, but the result of a 

location-based query regarding the task. Some 

papers [15], [16] consider queries on private 

locations in an outsourced database, but they only 

protect private data from an intermediate service 

provider while assuming a trust relationship 

between the data owner and the querying entity. 

This is not true in our scenario because mobile 

servers and the CCP may not share an inherent trust 

relationship. A recent work by To and Ghinita [17] 

has been proposed to protect location privacy of 

crowdsourcing workers in spatial crowdsourcing. 

However, their solution does not consider worker 

reputation, and thus cannot provide any quality 

control over the final result. Therefore, it cannot be 

easily applied to the mobile cloud computing 

scenario where service quality is very important. In 

this paper, we propose a framework that provides 

solutions to the above challenges, where both 

location privacy and service quality are considered. 

In our framework, the CCP only has access to 

sanitized location data of mobile servers according 

to differential privacy (DP). Since every mobile 

server is subscribed to a cellular service provider 

(CSP) with which it already has a trust relationship, 

the CSP can integrate mobile server location and 

reputation information, and provides the data to the 

CCP in noisy form according to DP. To generate 

the noisy mobile server data, we adapt the Private 

Spatial Decomposition (PSD) approach proposed in 

[17], [18], and construct a new structure called 

Reputation based PSD (R-PSD). Since fake points 

need to be created in the DP model, geocast is used 

to disseminate tasks to mobile servers to prevent 

the CCP from identifying these points. To 

summarize, our main contributions are as follows: 

1) We identify the specific challenges for task 

allocation in ad hoc mobile clouds, and propose a 

framework that can achieve differential privacy for 

mobile server location data while providing high 

service quality. 2) We introduce a new structure 

called R-PSD that partitions the space based on 

both reputation and location information, and 

develop an efficient search strategy that finds 

appropriate R-PSD partitions to ensure high quality 

of service. 3) We use a geocast mechanism when 

disseminating tasks to mobile servers to overcome 

the restrictions imposed by DP, and the overhead 

during this process is incorporated into the design 

of the search strategy. 4) We conduct extensive 

experiments based on real-world datasets to show 

the effectiveness of the proposed framework. The 

remainder of this paper is organized as follows. We 

present background on several techniques we use in 

Section 2. In Section 3, we describe the system 

model for the proposed framework. Section 4 and 

Section 5 describe the detailed solutions, i.e., R-

PSD generation and task allocation based on R-

PSD. Thereafter, we discuss the experimental 

results and evaluate the system overhead in Section 

7. Section 8 reviews the related work and Section 9 

concludes the paper. 

II.BACKGROUND 

In this section, we introduce background on 

differential privacy (DP) and Private Spatial 

Decomposition (PSD). 2.1 Differential Privacy The 

privacy guarantee provided in our framework is 
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ǫdifferential privacy [19], [20]. DP provides 

protection of datasets against adversaries with 

arbitrary background information. By sanitizing the 

data, DP prevents an adversary from knowing 

whether a certain individual record is present or not 

in the database. Formally speaking, we have the 

following formal definition. Definition 1. A 

randomized algorithm F satisfies ǫ-DP if for any 

two datasets D1 and D2 which differ in only one 

element, and ∀O ⊆ range(F), the following 

inequality holds: ln Pr[F(D1) ∈ O] Pr[F(D2) ∈ O] ≤ 

ǫ. (1) In the definition, the parameter ǫ bounds the 

ratio of probability distributions of two datasets 

differing on at most one element. It specifies the 

amount of privacy protection, and a smaller value 

of ǫ indicates better protection. We call this 

parameter the privacy budget. In order to achieve 

ǫ-DP in a dataset, the raw data is sanitized by 

adding random noise to the released query set QS. 

The amount of noise is determined by the 

sensitivity of QS, which is defined as follows: 

Definition 2. Given any two datasets D1 and D2 

which differ in one element, the sensitivity of the 

released query set QS is σ(QS) = max D1,D2 

kQSD1 − QSD2 k1 . (2) Given the sensitivity, a 

sufficient condition to achieve ǫ-DP is to add to 

each query result randomly distributed Laplace 

noise with mean λ = σ(QS)/ǫ [21]. The results from 

a database usually involve several stages of 

analyses Mi . The privacy level of the composition 

of several stages can be computed by the following 

results [22]: Theorem 1 (Sequential composition). 

If Mi are a set of analyses, each providing ǫi-DP, 

then their sequential composition satisfies ( P i ǫi)-

DP. Theorem 2 (Parallel composition). If Mi are a 

set of analyses, each providing ǫi-DP, then their 

parallel composition satisfies maxi (ǫi)-DP. These 

theorems enable us to calculate privacy level of an 

aggregated result based on the privacy level of each 

individual result. 2.2 Private Spatial Decomposition 

(PSD) The Private Spatial Decomposition (PSD) 

approach is first introduced in [18] to construct a 

spatial dataset that achieves DP. A PSD is a spatial 

index where each index node is associated with a 

spatial region, and the value for each node is the 

noisy count of data points (mobile servers in our 

scenario) in that region. The data structure for 

spatial index can be grids, k-d trees, or quadtrees 

[23]. Choice of data structure and its parameters 

(fan-out and height) can heavily influence the 

accuracy of PSD. In spacebased partitioning PSD 

such as grids and quad trees, the splitting 

 

Fig. 1: Privacy-preserving framework for task 

allocation in MCC. 

positions of space is independent of MS locations. 

Thus privacy budget is only consumed when 

calculating the noisy count of mobile servers. 

Typically, index nodes at the same level cover non-

overlapping extents, resulting in a low sensitivity of 

2 (i.e., the location change of a single MS affects at 

most 2 cells in a level). The privacy budget ǫ is 

distributed across levels according to geometric 

allocation strategy in [18], where leaf nodes are 

allocated more budget than higher level nodes. 

Space-based PSD are easy to construct, but they 

can become unbalanced when mobile servers are 

not uniformly distributed in space. On the other 

hand, object-based structures such as k-d trees [18] 

split space based on the locations of mobile servers. 

Since location data are used both for calculating 

splitting positions and computing noisy counts, the 

privacy budget should be split between the two 

processes as well. Object-based structures are 

expected to be more balanced than space-based 

PSD; however, they are not very robust in the sense 

that their accuracy may decrease abruptly with a 

slight change of the PSD parameters or input 

dataset distributions. The work in [24] proposes an 

adaptive grid (AG) approach with two-level grids. 

The first-level grid is uniformly divided, and the 

granularity of the second-level grid depends on the 

noisy counts obtained in the first-level. AG is a 

hybrid approach that inherits the simplicity and 

robustness of space-based approach, but still 

utilizes some data-dependent information when 

choosing the granularity for the second-level grid. 

In this paper, we adapt their approach to construct 

our PSD. 
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III. PROPOSED SYSTEM 

We propose a framework that provides solutions to 

the above challenges, where both location privacy 

and service quality are considered. In our 

framework, the CCP only has access to sanitized 

location data of mobile servers according to 

differential privacy (DP). Since every mobile 

server is subscribed to a cellular service provider 

(CSP) with which it already has a trust relationship, 

the CSP can integrate mobile server location and 

reputation information, and provides the data to the 

CCP in noisy form according to DP. To generate 

the noisy mobile server data, we adapt the Private 

Spatial Decomposition (PSD) approach proposed in 

construct a new structure called Reputation- based 

PSD (R-PSD). Since fake points need to be created 

in the DP model, geocast is used to disseminate 

tasks to mobile servers to prevent the CCP from 

identifying these points. 

IV.ALGORITHM 

Greedy Algorithm with PSD Input: Task t, 

dmax, ARk, k Output: Geocast region Ω  

1: Initialize Ω = ∅, ARk = 0;  

2: Let U denote the square of length 2 × dmax 

centered at the task location;  

3: Let AR(·) denote the overall acceptance rate 

ARk of a region; 

4: Q ← {the level-2 cell that covers task t};  

5: repeat  

6: if Q = ∅ then  

7: return Ω  

8: else  

9: c ∗ ← argmaxc∈Q AR (GR ∪ c);  

10: Q ← Q \ {c ∗};  

11: Ω ← Ω ∪ {c ∗};  

12: ARk ← AR(Ω);  

13: S ← ({neighbors of c ∗} \ Ω) ∩ U;  

14: Q ← Q ∪ S;  

15: end if  

16: until ARk ≥ ARk  

17: return Ω; 

 

Fig. 4: Illustration of a geocast region with R-

PSD. 

geocast region in this case is a combination of cells 

in all subPSDs for the R-PSD. An example of a 

geocast region is illustrated in Fig. 4. The input to 

the algorithm is task t, R-PSD with l sub-PSDs, and 

parameters dmax, ARk, ρ, and k. The variable wi 

represents the noisy count of servers included in the 

geocast region GR that belongs to the i-th sub-PSD, 

i = 1, 2, . . . , l. In addition to the constraint ARk ≥ 

ARk considered in Algorithm 1, we add a new 

constraint ρ({wi} l 1 ) < ρ, which guarantees the 

service quality of the chosen mobile servers. The 

geocast region GR is first initialized to an empty 

set and then expanded iteratively. In each iteration, 

a new cell that both best improves ARk and ensures 

ρ({wi} l 1 ) < ρ is selected and added to GR. The 

geocast region stops expanding when no new cells 

within distance of dmax can be added or until ARk 

exceeds ARk. The algorithm is a greedy approach 

that always chooses the cell with the highest 

acceptance rate while guaranteeing service quality 

at each iteration. 

VI. PERFORMANCE EVALUATIONS 

In this section, we evaluate the performance of 

our proposed framework using real-world 

datasets. 7.1 Experimental Setup We use two 

real-world datasets: Gowalla [36] and 

CrowdFlower [37]. The Gowalla dataset is 
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used to simulate the spatial distribution of 

mobile servers in our experiments, which 

contains a total of 6, 442, 890 check-ins on a 

location-based social networking website from 

Feb. 2009 to Oct. 2010. We use the check-in 

history of Gowalla users as the task allocation 

history of mobile servers. We consider 

Gowalla users as the mobile servers. We 

assume all check-ins of a Gowalla user, except 

the latest one, are tasks that have been 

completed by him/her, and the latest check-in 

location is treated as his/her current location. 

Due to data sparsity, there are no data points in 

some area of the dataset. Hence we overlay the 

dataset with a set of uniformly distributed 

mobile servers. The resulting mobile server 

distribution is shown in Fig. 5a, where each 

cross in the figure represents the current 

location of a mobile server. We extract the 

reputation scores of mobile servers based on a 

study carried out in [38], which asks 

participants to report traffic events in Dublin. 

They created and assigned approximately 4000 

tasks and calculated reputation scores of 

participants based on the ground truth of the 

tasks and historical performance in 

CrowdFlower. We randomly assign the 

reputation scores to Gowalla users so that we 

would get a dataset which contains both task 

performance history and reputation scores of 

servers. The reputation distribution is given in 

Fig. 5b. As we presented in Section 5, the 

service quality of the task can be captured by 

function ρ(·). In our experiment, we use the 

results in [39] to estimate the service quality of 

the task when k mobile servers with 

potentially different reputation levels perform 

the same task. In their paper, the error rate of 

completing a task, denoted as ER, is the metric 

to quantify the service quality. Suppose we use 

the majority voting to aggregate the results of 

mobile servers for a task. It is proved in [39] 

that the error rate ER, the required number of 

servers k, and the collective quality Q satisfy 

the following inequality: kQ2 4 ≤ ln 1 ER . (9) 

The collective quality Q is calculated in the 

following way. Define X as a random variable 

to describe the event that a mobile server 

submits a correct answer. We have Pr(X = 

True) = pr and Pr(X = False) = 1 − pr, where 

pr is the reputation score of a mobile server in 

our scenario. If the reputation scores of mobile 

servers are independent and identically 

distributed, we have Q = E (2pr − 1)2 , (10) 

where the expectation is take with respect to 

the distribution of reputation scores. 

Therefore, given an error rate requirement ER 

for a task and the number of required mobile 

servers k, we can deduce a corresponding 

requirement on the reputation score 

distribution in the geocast region. In our 

experiments, we suppose that mobile servers 

are divided into two groups whose reputation 

scores fall into [0, 0.5] and (0.5, 1], 

respectively. The number of servers in each 

group is w1 and w2, respectively. For a given 

geocast region, the collective quality depends 

on the ratio of the number of mobile servers in 

each group, i.e., w1/w2. If the reputation score 

in each reputation level follows a uniform 

distribution, the collective quality Q can be 

calculated from (10) as 

 

Given a requirement on ER and the number of 

mobile servers k, we can deduce a lower bound for 

Q and further calculate a requirement on w1 and 

w2. When constructing the geocast region, the CCP 

needs to ensure that the region can satisfy this 

requirement. We randomly generate 1, 000 tasks 

which are uniformly distributed in an area, and use 

our algorithms to calculate GR regions for each 

task. We also implement a baseline algorithm that 

is privacy-oblivious. The baseline algorithm has 

access to exact locations of all servers and always 

adds the nearest server to a set until the acceptance 

rate of the set surpasses the acceptance threshold 

ARk. 
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Fig. 1: Effect of privacy budget ǫ when ARk = 

0.9. 

Method. Fig.1 presents the system overhead for our 

private algorithm (the greedy algorithm based on 

PSD) and the baseline algorithm when varying 

privacy budget ǫ. As ǫ increases, which means 

mobile servers are less sensitive to their privacy 

breach, the PSD provides more accurate data for 

geocast, and the geocast overhead decreases as 

well. Additionally, we can observe that compared 

with the baseline, our private algorithm does not 

significantly increase the system overhead, 

especially when the privacy budget ǫ is larger than 

0.3. This shows the ability for our algorithm to 

choose nearby mobile servers for a task. 

V. CONCLUSION 

In this paper, we have investigated the privacy 

issues in the ad hoc mobile cloud computing, and 

have proposed a framework that protects the 

location privacy of mobile servers when allocating 

mobile cloud computing tasks. Considering the 

dynamic and diverse nature of mobile servers, we 

have designed a new data structure R-PSD and 

developed an efficient search strategy that finds 

appropriate R-PSD partitions to ensure high service 

quality. We have conducted extensive experiments 

based on real-world datasets to demonstrate the 

effectiveness of our proposed framework. 
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