
Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:141

AN EFFICIENT IMPLEMENTATION OF ONLINE PRODUCT

QUANTIZATION

#1P. HEMA VARDHAN, M.Tech Student,
#2

SMD SHASHI ULLA, Assistant Professor,

Dept of CSE,

SCIENT INSTITUTE OF TECHNOLOGY, IBRAHIMPATNAM , RANGAREDDY

TELANGANA.
Abstract—Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However,

existing popular methods for ANN search, such as hashing and quantization methods, are designed for static

databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high

computational effort for retraining the model based on the new database. In this paper, we address the problem by

developing an online product quantization (online PQ) model and incrementally updating the quantization codebook

that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale

computation for the online PQ update, we design two budget constraints for the model to update partial PQ

codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model.

Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported,

to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-

efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the

idea of partial PQ codebook update further reduces the update cost.

Index Terms:—Online indexing model, product quantization, nearest neighbour search.

I. INTRODUCTION

Computing Euclidean distances between high

dimensional vectors is a fundamental requirement in

many applications. It is used, in particular, for nearest

neighbor (NN) search. Nearest neighbor search is

inherently expensive due to the curse of

dimensionality [3], [4]. Focusing on the D-

dimensional Euclidean space R D, the problem is to

find the element NN(x), in a finite set Y ⊂ R D of n

vectors, minimizing the distance to the query vector x

∈ R D: NN(x) = arg min y∈Y d(x, y). (1) Several

multi-dimensional indexing methods, such as the

popular KD-tree [5] or other branch and bound

techniques, have been proposed to reduce the search

time. However, for high dimensions it turns out [6]

that such approaches are not more efficient than the

bruteforce exhaustive distance calculation, whose

complexity is O(nD). There is a large body of

literature [7], [8], [9] on algorithms that overcome

this issue by performing approximate nearest

neighbor (ANN) search. The key idea This work was

partly realized as part of the Quaero Programme,

funded by OSEO, French State agency for

innovation. It was originally published as a technical

report [1] in August 2009. It is also related to the

work [2] on source coding for nearest neighbor

search. shared by these algorithms is to find the NN

with high probability “only”, instead of probability 1.

Most of the effort has been devoted to the Euclidean

distance, though recent generalizations have been

proposed for other metrics [10]. In this paper, we

consider the Euclidean distance, which is relevant for

many applications. In this case, one of the most

popular ANN algorithms is the Euclidean Locality-

Sensitive Hashing (E2LSH) [7], [11], which provides

theoretical guarantees on the search quality with

limited assumptions. It has been successfully used for

local descriptors [12] and 3D object indexing [13],

[11]. However, for real data, LSH is outperformed by

heuristic methods, which exploit the distribution of

the vectors. These methods include randomized KD-

trees [14] and hierarchical k-means [15], both of

which are implemented in the FLANN selection

algorithm [9]. ANN algorithms are typically

compared based on the trade-off between search

http://jespublication.com/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:142

quality and efficiency. However, this trade-off does

not take into account the memory requirements of the

indexing structure. In the case of E2LSH, the

memory usage may even be higher than that of the

original vectors. Moreover, both E2LSH and FLANN

need to perform a final re-ranking step based on exact

L2 distances, which requires the indexed vectors to

be stored in main memory if access speed is

important. This constraint seriously limits the number

of vectors that can be handled by these algorithms.

Only recently, researchers came up with methods

limiting the memory usage. This is a key criterion for

problems involving large amounts of data [16], i.e.,

in large-scale scene recognition [17], where millions

to billions of images have to be indexed. In [17],

Torralba et al. represent an image by a single global

GIST descriptor [18] which is mapped to a short

binary code. When no supervision is used, this

mapping is learned such that the neighborhood in the

embedded space defined by the Hamming distance

reflects the neighborhood in the Euclidean space of

the original features. The search of the Euclidean

nearest neighbors is then approximated by the search

of the nearest neighbors in terms of Hamming

distances between codes. In [19], spectral hashing

(SH) is shown to outperform the binary codes

generated by the restricted Boltzmann machine [17],

boosting and LSH. Similarly, the Hamming

embedding method of Jegou et al. [20], 2 [21] uses a

binary signature to refine quantized SIFT or GIST

descriptors in a bag-of-features image search

framework. In this paper, we construct short codes

using quantization. The goal is to estimate distances

using vectorto-centroid distances, i.e., the query

vector is not quantized; codes are assigned to the

database vectors only. This reduces the quantization

noise and subsequently improves the search quality.

To obtain precise distances, the quantization error

must be limited. Therefore, the total number k of

centroids should be sufficiently large, e.g., k = 2
64

 for

64-bit codes. This raises several issues on how to

learn the codebook and assign a vector. First, the

number of samples required to learn the quantizer is

huge, i.e., several times k. Second, the complexity of

the algorithm itself is prohibitive. Finally, the amount

of computer memory available on Earth is not

sufficient to store the floating point values

representing the centroids. The hierarchical k-means

see (HKM) improves the efficiency of the learning

stage and of the corresponding assignment procedure

[15]. However, the aforementioned limitations still

apply, in particular with respect to memory usage and

size of the learning set. Another possibility are scalar

quantizers, but they offer poor quantization error

properties in terms of the trade-off between memory

and reconstruction error. Lattice quantizers offer

better quantization properties for uniform vector

distributions, but this condition is rarely satisfied by

real world vectors. In practice, these quantizers

perform significantly worse than k-means in indexing

tasks [22]. In this paper, we focus on product

quantizers. To our knowledge, such a semi-structured

quantizer has never been considered in any nearest

neighbor search method. The advantages of our

method are twofold. First, the number of possible

distances is significantly higher than for competing

Hamming embedding methods [20], [17], [19], as the

Hamming space used in these techniques allows for a

few distinct distances only. Second, as a byproduct of

the method, we get an estimation of the expected

squared distance, which is required for ε-radius

search or for using Lowe’s distance ratio criterion

[23]. The motivation of using the Hamming space in

[20], [17], [19] is to compute distances efficiently.

Note, however, that one of the fastest ways to

compute Hamming distances consists in using table

lookups. Our method uses a similar number of table

lookups, resulting in comparable efficiency. An

exhaustive comparison of the query vector with all

codes is prohibitive for very large datasets. We,

therefore, introduce a modified inverted file structure

to rapidly access the most relevant vectors. A coarse

quantizer is used to implement this inverted file

structure, where vectors corresponding to a cluster

(index) are stored in the associated list. The vectors

in the list are represented by short codes, computed

by our product quantizer, which is used here to

encode the residual vector with respect to the cluster

center. The interest of our method is validated on two

kinds of vectors, namely local SIFT [23] and global

GIST [18] descriptors. A comparison with the state of

the art shows that our approach outperforms existing

techniques, in particular spectral hashing [19],

Hamming embedding [20] and FLANN [9]. Our

paper is organized as follows. Section II introduces

the notations for quantization as well as the product

quantizer used by our method. Section III presents

our approach for NN search and Section IV

http://jespublication.com/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:143

introduces the structure used to avoid exhaustive

search. An evaluation of the parameters of our

approach and a comparison with the state of the art is

given in Section V.S

II. BACKGROUND:

QUANTIZATION, PRODUCT

QUANTIZER

A large body of literature is available on vector

quantization, see [24] for a survey. In this section, we

restrict our presentation to the notations and concepts

used in the rest of the paper. A. Vector quantization

Quantization is a destructive process which has been

extensively studied in information theory [24]. Its

purpose is to reduce the cardinality of the

representation space, in particular when the input

data is real-valued. Formally, a quantizer is a

function q mapping a Ddimensional vector x ∈ R D

to a vector q(x) ∈ C = {ci ;i ∈ I}, where the index set

I is from now on assumed to be finite: I = 0 . . . k − 1.

The reproduction values ci are called centroids. The

set of reproduction values C is the codebook of size

k. The set Vi of vectors mapped to a given index i is

referred to as a (Voronoi) cell, and defined as Vi , {x

∈ R D : q(x) = ci}.

The k cells of a quantizer form a partition of R D. By

definition, all the vectors lying in the same cell Vi are

reconstructed by the same centroid ci . The quality of

a quantizer is usually measured by the mean squared

error between the input vector x and its reproduction

value q(x): MSE(q) = EX d(q(x), x) 2 = Z p(x) d q(x),

x2 dx

where d(x, y) = ||x − y|| is the Euclidean distance

between x and y, and where p(x) is the probability

distribution function corresponding the random

variable X. For an arbitrary probability distribution

function, Equation 3 is numerically computed using

Monte-Carlo sampling, as the average of ||q(x) − x||2

on a large set of samples. In order for the quantizer to

be optimal, it has to satisfy two properties known as

the Lloyd optimality conditions. First, a vector x

must be quantized to its nearest codebook centroid, in

terms of the Euclidean distance: q(x) = arg min ci∈C

d(x, ci). (4) As a result, the cells are delimited by

hyperplanes. The second Lloyd condition is that the

reconstruction value must be the expectation of the

vectors lying in the Voronoi cell: ci = EX x|i = Z Vi

p(x) x dx. (5) The Lloyd quantizer, which

corresponds to the kmeans clustering algorithm, finds

a near-optimal codebook by iteratively assigning the

vectors of a training set to centroids and re-estimating

these centroids from the assigned vectors. In the

following, we assume that the two Lloyd conditions

hold, as we learn the quantizer using k-means. Note,

however, that k-means does only find a local

optimum in terms of quantization error. Another

quantity that will be used in the following is the mean

squared distortion ξ(q, ci) obtained when

reconstructing a vector of a cell Vi by the

corresponding centroid ci . Denoting by pi = P q(x) =

ci the probability that a vector is assigned to the

centroid ci , it is computed as ξ(q, ci) = 1 pi Z Vi d x,

q(x) 2 p(x) dx. (6) Note that the MSE can be obtained

from these quantities as MSE(q) = X i∈I pi ξ(q, ci).

(7) The memory cost of storing the index value,

without any further processing (entropy coding), is

⌈log2 k⌉ bits. Therefore, it is convenient to use a

power of two for k, as the code produced by the

quantizer is stored in a binary memory. B. Product

quantizers Let us consider a 128-dimensional vector,

for example the SIFT descriptor [23]. A quantizer

producing 64- bits codes, i.e., “only” 0.5 bit per

component, contains k = 264 centroids. Therefore, it

is impossible to use Lloyd’s algorithm or even HKM,

as the number of samples required and the

complexity of learning the quantizer are several times

k. It is even impossible to store the D × k floating

point values representing the k centroids. Product

quantization is an efficient solution to address these

issues. It is a common technique in source coding,

which allows to choose the number of components to

be quantized jointly (for instance, groups of 24

components can be quantized using the powerful

Leech lattice). The input vector x is split into m

distinct sub vectors uj , 1 ≤ j ≤ m of dimension D∗ =

D/m, where D is a multiple of m. The sub vectors are

quantized separately using m distinct quantizers. A

given vector x is therefore mapped as follows: x1, ...,

xD∗ | {z } u1(x) , ..., xD−D∗+1, ..., xD | {z } um(x)

→ q1 u1(x)), ..., qm(um(x) , (8) where qj is a low-

complexity quantizer associated with the j th sub

vector. With the subquantizer qj we associate the

index set Ij , the codebook Cj and the corresponding

reproduction values cj,i. A reproduction value of the

product quantizer is identified by an element of the

product index set I = I1 × . . . × Im. The codebook is

therefore defined as the Cartesian product C = C1 × .

http://jespublication.com/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:144

. . × Cm, (9) and a centroid of this set is the

concatenation of centroids of the m subquantizers.

From now on, we assume that all subquantizers have

the same finite number k ∗ of reproduction values. In

that case, the total number of centroids is given by k

= (k ∗) m. (10) Note that in the external case where

m = D, the components of a vector x are all quantized

separately. Then the product quantizer turns out to be

a scalar quantizer, where the quantization function

associated with each component may be different.

The strength of a product quantizer is to produce a

large set of centroids from several small sets of

centroids: those associated with the subquantizers.

When learning the subquantizers using Lloyd’s

algorithm, a limited number of vectors is used, but

the codebook is, to some extent, still adapted to the

data distribution to represent. The complexity of

learning the quantizer is m times the complexity of

performing k-means clustering with k ∗ centroids of

dimension D∗

Table I Memory Usage Of The Codebook And

Assignment Complexity For Different Quantizers.

Hkm Is Parametrized By Tree Height L And The

Branching Factor Bf .

Storing the codebook C explicitly is not efficient.

Instead, we store the m × k ∗ centroids of all the

subquantizers, i.e., m D∗ k ∗ = k ∗ D floating points

values. Quantizing an element requires k ∗D floating

point operations. Table I summarizes the resource

requirements associated with k-means, HKM and

product k-means. The product quantizer is clearly the

the only one that can be indexed in memory for large

values of k. In order to provide good quantization

properties when choosing a constant value of k ∗ ,

each subvector should have, on average, a

comparable energy. One way to ensure this property

is to multiply the vector by a random orthogonal

matrix prior to quantization. However, for most

vector types this is not required and not

recommended, as consecutive components are often

correlated by construction and are better quantized

together with the same subquantizer. As the

subspaces are orthogonal, the squared distortion

associated with the product quantizer is MSE(q) = X j

MSE(qj), (11) where MSE(qj) is the distortion

associated with quantizer qj . Figure 1 shows the

MSE as a function of the code length for different

(m,k ∗) tuples, where the code length is l = m log2 k

∗ , if k ∗ is a power of two. The curves are obtained

for a set of 128-dimensional SIFT descriptors, see

section V for details. One can observe that for a fixed

number of bits, it is better to use a small number of

subquantizers with many centroids than having many

subquantizers with few bits. At the extreme when m

= 1, the product quantizer becomes a regular k-means

codebook. High values of k ∗ increase the

computational cost of the quantizer, as shown by

Table I. They also increase the memory usage of

storing the centroids (k ∗ × D floating point values),

which further reduces the efficiency if the centroid

look-up table does no longer fit in cache memory. In

the case where m = 1, we cannot afford using more

than 16 bits to keep this cost tractable. Using

Fig. 1. SIFT: quantization error associated with

the parameters m and k ∗ .

http://jespublication.com/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:145

Fig. 2. Illustration of the symmetric and

asymmetric distance computation. The distance

d(x, y) is estimated with either the distance d(q(x),

q(y)) (left) or the distance d(x, q(y)) (right). The

mean squared error on the distance is on average

bounded by the quantization error.

k ∗ = 256 and m = 8 is often a reasonable choice.

III. PROPOSED SYSTEM

We have presented our online PQ method to

accommodate streaming data. In addition, we employ

two budget constraints to facilitate partial codebook

update to further alleviate the update time cost. A

relative loss bound has been derived to guarantee the

performance of our model. In addition, we propose

an online PQ over sliding window approach, to

emphasize on the real-time data. Experimental results

show that our method is significantly faster in

accommodating the streaming data, outperforms the

competing online hashing methods and unsupervised

batch mode hashing method in terms of search

accuracy and update time cost, and attains

comparable search quality with batch mode PQ.

.

IV. ALGORITHM

ONLINE PQ

1: initialize PQ with the M ∗ K sub-codewords z 0

1,1 , ..., z0 m,k, ..., z0 M,K using a initial set of data

2: initialize C 0 1,1 , ..., C0 m,k, ..., C0 M,K to be the

cluster sets that contain the index of the initial data

that belong to the cluster

3: create counters n1,1, ..., nm,k, ..., nM,K for each

cluster and initialize each nm,k to be the number of

initial data points assigned to the corresponding C 0

m,k

4: for t = 1, 2, 3, ... do

5: get a new data x t

6: partition x t into M subspaces [x t 1 , ..., xt M]

7: in each subspace m ∈ {1, ..., M}, determine and

assign the nearest sub-codeword z t m,k for each

subvector x t m

8: update the cluster set C t m,k ← C t−1 m,k ∪

{ind} ∀m ∈ {1, ..., M} where ind is the index number

of x t

9: update the number of points for each sub-

codeword: nm,k ← nm,k + 1 ∀m ∈ {1, ..., M}

10: update the sub-codeword: z t+1 m,k ← z t m,k +

1 nm,k (x t m − z t m,k) ∀m ∈ {1, ..., M}

11: end for

Fig. 3: A schematic figure of online product

quantization with budget constraints. There are

two subspaces where each subspace has two sub-

codewords. After the codebook adapting to the

new data, two of the four sub-codewords get

hugely changed (highlighted in a red dashed

rectangle) and the rest two sub-code words barely

changed.

http://jespublication.com/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:146

IV. EXPERIMENTS

We conduct a series of experiments on several real-

world datasets to evaluate the efficiency and

effectiveness of our model. In this section, we first

introduce the datasets used in the experiments. We

then show the convergence of our online PQ model to

the batch PQ method in terms of the quantization

error, and then compare the online version and the

mini-batch version of our online PQ model. After

that, we analyze the impact of the parameters α and λ

in update constraints. Finally, we compare our

proposed model with existing related hashing

methods for different applications.

5.1 Datasets and evaluation criterion

There are one text dataset, four image datasets and

two video datasets employed to evaluate the proposed

method. 20 Newsgroups Data (News20) [35] consists

of chronologically ordered 18,845 newsgroup

messages. Caltech-101 [36] consists of 9144 images

and each image belongs to one of the 101 categories.

Half dome [37] includes 107,732 image patches

obtained from Photo Tourism reconstructions from

Half Dome (Yosemite). Sun397 [38] contains around

108K images in 397 scenes. Image Net [39] has over

1.2 million images with a total of 1000 classes.

YoutubeFaces1 contains 3,425 videos of 1,595

different people, with a total of 621,126 frames. UQ

VIDEO2 consists of 169,952 videos with 3,305,525

frames in total. We use 300-D doc2vec features to

represent each news article in News20 and 512-D

GIST features to represent each image in the four

image datasets. We use two different features, 480-D

Center-Symmetric LBP (CSLBP) and 560-D Four-

Patch LBP (FPLBP) to represent each frame in

YoutubeFaces. 162-D HSV feature is used in UQ

VIDEO dataset. Table 3 shows detailed statistical

information about datasets used in evaluation. We

measure the performance of our proposed model by

the model update time and the search quality

measurement recall@R adopted in [13]. We use

recall@20 which indicates that fraction of the query

for which the nearest neighbor is in the top 20

retrieved images by the model.

5.2 CONVERGENCE
The data instances in the entire dataset are input

sequentially to our online PQ model. We run our

algorithm for

1. https://www.cs.tau.ac.il/ wolf/ytfaces/

2. http://staff.itee.uq.edu.au/shenht/UQ VIDEO/

Fig. 5: Convergence of online PQ using ImageNet

dataset. Effective iterations are shown on the x-

axis.

50 effective iterations3. To show the convergence of

our online model, we compare its training loss at

each iteration with the one of the batch PQ method.

The training loss is computed as the averaged

quantization error for all data points in one pass.

Figure 5 shows that the training loss of our online

model converges to the one of the batch model,

implying that codewords learned from the online PQ

model are similar to the ones learned from the batch

PQ approach. Therefore, the performance of the

online PQ model converges to the batch PQ

performance.

Fig. 6: The left figure shows the update time
for each iteration of update. The time of the
online version for each iteration sums up the
update time of the streaming data
corresponding to the ones in the mini-batch.

http://jespublication.com/
https://www.cs.tau.ac.il/
http://staff.itee.uq.edu.au/shenht/UQ%20VIDEO/

Vol 10, Issue 11, Nov / 2019

ISSN NO: 0377-9254

www.jespublication.com Page No:147

The right figure shows the recall@1, 20 and
100 for each iteration.

VI.CONCLUSIONS
In this paper, we have presented our online PQ

method to accommodate streaming data. In addition,

we employ two budget constraints to facilitate partial

codebook update to further alleviate the update time

cost. A relative loss bound has been derived to

guarantee the performance of our model. In addition,

we propose an online PQ over sliding window

approach, to emphasize on the real-time data.

Experimental results show that our method is

significantly faster in accommodating the streaming

data, outperforms the competing online and batch

hashing methods in terms of search accuracy and

update time cost, and attains comparable search

quality with batch mode PQ. In our future work, we

will extend the online update for other MCQ

methods, leveraging the advantage of them in a

dynamic database environment to enhance the search

performance. Each of them has challenges to be

effectively extended to handle streaming data. For

example, CQ [22] and SQ [23] require the old data

for the codewords update at each iteration due to the

constant inter-dictionary-elementproduct in the

model constraint. AQ [21] requires a high

computational encoding procedure, which will

dominate the update process in an online fashion. TQ

[24] needs to consider the tree graph update together

with the codebook and the indices of the stored data.

Extensions to these methods can be developed to

address the challenges for online update. In addition,

online PQ model can be extended to handle other

learning problems such as multioutput learning [40],

[41]. Moreover, the theoretical bound for the online

model will be further investigated.

REFERENCES

1. A. Moffat, J. Zobel, and N. Sharman, “Text

compression for dynamic document databases,”

TKDE, vol. 9, no. 2, pp. 302–313, 1997.

2. R. Popovici, A. Weiler, and M. Grossniklaus,

“On-line clustering for real-time topic detection

in social media streaming data,” in SNOW 2014

Data Challenge, 2014, pp. 57–63.

3. A. Dong and B. Bhanu, “Concept learning and

transplantation for dynamic image databases,” in

ICME, 2003, pp. 765–768.

4. K. Crammer, O. Dekel, J. Keshet, S. Shalev-

Shwartz, and Y. Singer, “Online passive-

aggressive algorithms,” JMLR, vol. 7, pp. 551–

585, 2006.

5. L. Zhang, T. Yang, R. Jin, Y. Xiao, and Z. Zhou,

“Online stochastic linear optimization under one-

bit feedback,” in ICML, 2016, pp. 392–401.

6. L. Huang, Q. Yang, and W. Zheng, “Online

hashing,” in IJCAI, 2013, pp. 1422–1428.

7. “Online hashing,” TNNLS, 2017.

8. M. Ghashami and A. Abdullah, “Binary coding

in stream,” CoRR, vol. abs/1503.06271, 2015.

9. C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu,

“Online sketching hashing,” in CVPR, 2015, pp.

2503–2511.

10. F. Cakir and S. Sclaroff, “Adaptive hashing for

fast similarity search,” in ICCV, 2015, pp. 1044–

1052.

11. Q. Yang, L. Huang, W. Zheng, and Y. Ling,

“Smart hashing update for fast response,” in

IJCAI, 2013, pp. 1855–1861.

12. F. Cakir, S. A. Bargal, and S. Sclaroff, “Online

supervised hashing,” CVIU, 2016.

13. H. Jegou, M. Douze, and C. Schmid, “Product

quantization for ´ nearest neighbor search,”

TPAMI, vol. 33, no. 1, pp. 117–128, 2011.

14. C. Ma, I. W. Tsang, F. Peng, and C. Liu, “Partial

hash update via hamming subspace learning,”

IEEE Transactions on Image Processing, vol. 26,

no. 4, pp. 1939–1951, 2017.

15. M. Norouzi and D. J. Fleet, “Minimal loss

hashing for compact binary codes,” in ICML,

2011, pp. 353–360.

16. W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang,

“Supervised hashing with kernels,” in CVPR,

2012, pp. 2074–2081.

17. Y. Gong and S. Lazebnik, “Iterative

quantization: A procrustean approach to learning

binary codes,” in CVPR, 2011, pp. 817–824.

18. W. Kong and W. Li, “Isotropic hashing,” in

NIPS, 2012, pp. 1655– 1663.

19. Y. Weiss, A. Torralba, and R. Fergus, “Spectral

hashing,” in NIPS, 2008, pp. 1753–1760.

20. A. Gionis, P. Indyk, and R. Motwani, “Similarity

search in high dimensions via hashing,” in

VLDB, 1999, pp. 518–529.

http://jespublication.com/

