

A MODEL TO ENHANCE SECURITY IN SOFTWARE DEFINED

NETWORKING (SDN)

SHAIK MOHAMMED SHAFIULLA

Assistant Professor,

Department of Computer Science & Engineering,

Scient Institute of Technology, Hyderabad,[India].

Abstract : Software Defined Networking, or SDN, is a new technology that has the potential to

take the place of the usual vendor-based proprietary CLI networking devices.Applications-based

network control has been introduced by SDN, which has presented numerous opportunities as

well as challenges for research and innovation in these networks.Security is a concern for

developers who want to invest in SDN, despite its numerous advantages and opportunities.I

examine the SDN security issues and their solutions in this paper.I have developed a threat

model for four different use cases that can be used to account for SDN's security needs.These are

the use cases:I) safeguard controllers against applications; II) safeguard controllers between

controllers; III) safeguard controllers against data plane or switches; and IV) safeguard

controllers against malicious switches.If one of these SDN components is secure, another is

already secure, as i discovered.In addition, i provided insights for protection mechanism and

security enhancements by comparing SDN and traditional network security in relation to these

four use cases.Based on the Ryu controller, a framework for creating an SDN security

application has been presented.I believe that a ready reference for dealing with vulnerabilities

and threats in this area will be provided by our threat model, which will assist numerous

researchers and developers in comprehending the current security requirements.With our

proposed security architecture, i conclude by identifying some unsolved research issues and

potential future research directions.

Keywords : Software defined networking (SDN), openflow, control plane, data

plane,controller; programmability

I INTRODUCTION

Traditional network (TN) devices, such as

routers, switches, firewalls, load balancers,

and so on, are extremely powerful and offer

a variety of networking control

functions.However, security is always a

major concern because the network is

distributed and contains a variety of devices

that perform a variety of networking

functions [1].Every year, a lot of new

models are made with more processing

power and new software versions from

vendors, so customers have to buy new

hardware to use the new software.These

restrictive gadgets are expensive and have

their own specific manner of arrangement

through CLI, having a few explicit orders

also, various sellers have various orders to

speak with these gadgets.There may be

configuration errors and security breaches as

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1767

a result [2].The results of these commands

are as intended by the human operator, and

further programmability cannot be achieved

with this output.As a result, researchers and

network engineers who want to scale and

automate their network operations in

response to demand cannot do so

[3].Compared to system administration,

where software is independent of the

hardware, these hardware-dependent

systems that are tightly coupled with

software have failed to advance networking.

An operating system is a piece of software

that is independent of hardware in system

administration.I am free to install any

software and operating system on any

hardware in accordance with the

requirements.System administration is

changing quickly as a result.Utilizing a

hypervisor, which oversees multiple virtual

machines running on distinct host operating

systems, i am now able to install numerous

servers on a single piece of

hardware.Docker is another solution that

provides high-level resource utilization [4],

as shown in Fig.1 and 2, specifically.In the

concept of virtual machines as depicted in

Fig.1, a VM image that is used by a specific

service receives dedicated processing

resources and an operating system; however,

Docker provides containers for hosting

specific services or applications, which use

very few resources compared to virtual

machines, as depicted in Fig.2.On a single

operating system, a single Docker engine

can house thousands of containers running

various applications on specific servers.In

contrast, in network administration, I will

continue to work with hardware-dependent

networking devices that require a significant

amount of processing power and time for

manual configuration.The current

networking architecture must be redesigned

to meet the aforementioned requirements

with automation, programmability, and

flexibility.

Fig 1 : Virtual Machines hosted on

Hypervisor

Fig 2 : Containerized Applications on Single

OS through Docker.

Software Defined Networking [5] is a new

concept which provides an API for

configuration and decouples software logic

from the devices. These devices work as

simple data forwarding devices. The

software or logical intelligence has been

placed in a centralized controller. . The

communication of forwarding devices and

controller is established through a

southbound API e.g. openflow [3]. All the

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1768

networking functions like Routing, Security

and Network monitoring etc. are done

through the applications in application

plane. The communication of application

plane and controller is coordinated by

northbound API e.g. RESTful API [6]. This

provides the programmability approach and

various applications can be designed a per

the network demands. Network engineers

can also use third party applications

irrespective of hardware based solution for

managing their network infrastructure. The

idea of SDN is to use vendor specific

hardware and I am free to choose software

as per network demands irrespective of

hardware. This arrangement of network

functionality provides various opportunities

for research and innovation in these

networks. SDN is evolving and it has

various advantages or traditional networks

like dynamic control, programmability and a

complete view of the network. As it is a new

technology security solutions in SDN need

to redefine and it provides various

challenges and opportunities.

II THREAT MODEL

A threat model based on the SDN

architecture depicts the various ways in

which SDN components can be attacked.If

one component is compromised, SDN

components are interconnected.It poses a

threat not only to one component but also to

the entire network.Identifying the various

attacks that an attacker could use against a

specific SDN component is our objective

here.SDN applications are in the Application

Plane, controllers are in the Control Plane,

and networking devices like switches are in

the Data Plane.In Fig.3 The SDN block

diagram with its components has been

shown.I have derived four threat analysis

use cases from this architecture.

 SDN security issues and solutions

can be displayed in a variety of ways

[10][11].The majority of authors talk about

the same thing with a layer-based approach,

but i think that SDN architecture is different

from a traditional network in some ways, so

i created a new taxonomy to cover all SDN

security issues. A network scenario with n

no.of regulators

C = {c1,c2, … … .cn}.From the set of
applications Aci = a1.a2,......an, each

controller ci C can run at least one

application.Due to their limited resources,

each controller is susceptible to denial-of-

service attacks.Four use cases have been

derived from SDN architecture.The security

objectives and importance of each use case

vary.Fig.4 depicts the Threat model for the

SDN's security requirements.Figure depicts

the SDN architecture and associated use

cases.3 and 4 in particular. A passive attack

known as a "semi-beneficial" attack may

collect information about the network or

processes, but it will not alter the protocol's

execution. An active threat that deviates

from protocol rules in order to disrupt the

system and attack other components of the

system is referred to as malevolent behavior

[12][13].The four use cases are outlined

below.

2.1 Use Case 1: Securing Controller from

Applications in Application Plane

In this use case, every application in the

application plane can be good, half-good, or

bad.These applications might come from

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1769

third-party apps, for example [14].The

controller provides an abstraction to the

application plane so that the application can

generally read and edit network state, which

is a form of network control.An attacker can

impede network operations by

impersonating an application and gaining

access to controller, or network control

[15].Spoofing attacks may result from an

absence of trust and inadequate

authentication between controllers and

applications [16][17].The reduction of

applications' attacks on controllers is our

objective here.

2.2 Use Case 2: Inter Controller Security

In SDN, control is logically centralized. It

provides more than one controller for

providing scalability and avoiding single

point of failure [18]. As a result these

controllers share the resources and

communicate with each other. It is necessary

to review the security of inter controller

communication [19]. In this use case i

assumed one or more controller is semi

benign or malevolent. A semi benign

controller could be able to access the control

data of other controllers, learn resource

utilization information and target the

integrity of the network. Moreover a

malevolent controller can attack to semi

benign controller and perform a DoS attack

on another controller. Our goal is to protect

controller from each other [20].

2.3 Use Case 3: Securing Switches from

Controller

In this use case it is assumed at least one

controller is semi benign or malevolent. I

assumed that applications which are used

through this controller can be semi benign or

malevolent.A semi benign controller can

target switches in the data plane. It can

attack switch flow table with buffer

overflow by sending bogus entry [21]. Our

goal here is to eliminate the possibility of

controller’s ability to target the switch with

bogus entry [22].

Fig 3 : SDN Architecture

Fig. 4. Threat Model

III SECURITY ENHANCEMENTS IN

SDN

Four of the most significant attack use cases

in SDN and traditional networks have been

compared.In contrast to controller attacks in

SDN, I have seen how control functions in

TNs can be attacked in a variety of use cases

[40]. The lessons learned from comparing

these use cases in terms of threats and

defenses will now be discussed.Based on

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1770

our threat model, i will investigate how SDN

security can be improved [41].Before

developing a security application based on

attacks from the aforementioned use cases, i

will first elaborate on each use case.

3.1 Usecase 1 :

Securing Controller from

Applications Since network control

functions are part of network devices in

traditional networks, this situation does not

apply to TNs, as i discussed in the previous

section.Decoupled from network devices,

network control functions in SDN take the

form of applications.These applications

work with the controller and data plane

devices [42].In point of fact, these

applications communicate with the

controller in order to fulfill the requirement

of the network. An unauthorized application,

on the other hand, has the potential to

significantly harm the controller and even

reconfigure the network [43].Before

exchanging control messages, the access

controller and the application need to

maintain a trusted connection in order to

defend against an unauthorized

application.Before establishing a

connection, applications must be validated

for both authentication and

authorization.[44] discusses this concern

regarding the controller's authentication and

security by untrusted applications.A

controller hierarchy was introduced by the

authors.Because the application's code runs

in the middle of the hierarchy, where there is

a lot of protection, this hierarchical system

can reduce the impact of harmful

applications.FortNox [45] is another piece of

work in this direction.The open-source

controller NOX is the foundation for

FortNox [29].It is a security enforcement

kernel that monitors the flow rules in real

time for security policy violations.A role-

based authentication approach grants

authorization to each openflow

application.The roles of flow rule producers

are as follows:OF Security, OF Application,

and OF Operator.A higher priority rule is

accepted if FortNox finds a flow rule

conflict.Application identification and

priority enforcement are FortNox's

limitations.

The improvement to the controller's

resistance to malicious applications is

ROSEMARY [46].It is a robust and secure

network operating system with high

performance.Each application instance that

is running is sandboxed to protect the

control layer from any

vulnerabilities.Additionally, it regulates and

monitors the resources utilized by each

application.The authors of LegoSDN [47]

investigate the impact of application failure

on controller reliability.The authors

suggested putting an isolation layer between

the controller and the applications to prevent

the controller from failing because of an

application failure.

3.2 Usecase2 :

Multiple controllers have been suggested for

inter-controller protection in SDN in order

to prevent a single point failure.There are

two types of placement schemes for

controllers:Both flat controller deployment

and hierarchical controller deployment are

options.In the flat controller idea, each

controller gets its own subnet.Different

operations may not be able to communicate

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1771

equally with various domains in this

solution.However, in hierarchical mode, the

global controller is in charge of the local

controller and the local controller is in

charge of the respective network.The global

controller is the medium through which the

various controllers communicate.The

controller placement issue has been

addressed through a number of different

efforts.An algorithm for determining the

optimal controller load and minimum

number of controllers was proposed in

[48].However, for the request with variable

time, this arrangement was ineffective.The

author of [49] proposed an algorithm that

divides the network into multiple

subnets.Each little organization contains a

regulator in view of the size of relegated

network.It divides the network according to

switch density using a clustering

algorithm.It may use a backup link in the

event that the primary link fails.However, it

might cause an unnecessary delay.A multi-

controller solution with a Byzantine fault-

tolerant mechanism is presented by the

authors in [50].When one controller fails,

the network is managed by the other

controller, which also removes the previous

controller's idle link.However, due to

performance issues in larger networks, this

solution works well for smaller networks.

3.3 Usecase 3 :

Protecting Switches from Controllers In

SDN, the controlling element controller has

more functionality, making it possible for a

malicious controller to cause significant

damage to data plane switches.By

generating broadcast that isn't needed, a

compromised controller can attack the

switch flow table and overflow the

table.Thus, the primary defense for data

plane switches is to prevent malicious

activity from occurring on the controller.A

method for spotting a malicious SDN device

in the network was suggested by the authors

in [26].They set up a backup controller and

gathered state updates and information from

the primary controller and switches.By

recognizing the primary controller, backup

controller, and SDN switches' unexpected

and inconsistent behavior, they identify

malicious devices.

By the comparisons and discussion

in the last two sections it can be stated that

there is a need to develop a security

mechanism to counter the security issues of

SDN. As discussed that the controlling

functions in the SDN are performed by the

applications in application plane. For

implementing the security functions there is

a need to design the security application in

SDN. But this is advancement in SDN that

network controlling functions like security,

routing, and monitoring etc., are in the form

of applications. For Design and

implementation, I used mininet as network

emulator and Ryu as a controller. First i will

focus basic steps and algorithm for

designing an application as per controller

and data plane communication.Python

language is used to develop the network

applications based on Ryu controller. Ryu is

a components based controller which has

various modules for application design and

control. In ryu controller setup at

home/ubuntu/ryu it has various folders; app,

base and ofproto. App folder can contain

various applications like firewall, router and

load balancer. Base folder contains

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1772

App_manager which helps to run the

different applications and prepares

framework and datapath for running the

application. Ofproto deals with openflow

version related queries and matching

capabilities. For designing a SDN

application need to collect and understand

the initial requirements and booting process

of SDN network framework.

a)In first step switch boots up and contact

the controller for openflow version related

queries and check its capabilities.

b)The controller installs Packet In function

and table miss function and prepares itself

for queries from switch.

c)When receiving Packet In, Controller

learns the source MAC and mention the

MAC and port information in flow table. It

checks for destination MAC address if it is

available in flow tables, it uses Packet Out

function on the port and installs the flow and

stores the same for future uses.

d)If destination MAC address is not

available in flow table i.e. a table miss then

controller uses packet out function to

broadcast the packet to all ports.

By using the ryu controller

framework i can design and deploy

customized security applications. With

programmability approach in SDN , i can

have our own security application in ryu app

folder and program it as per network

demands and configure it through standard

API. Traditional security solutions, the

vendor specific e.g. fortigate and Cisco, they

have their own proprietary code and

configuration methods which are fixed and

cannot be customized as per demands. When

Host A wants to communicate to Host B it

sends a packet to switch. Switch check for a

matching entry in its flow table but when a

matching entry is not found in flow table

then packet is forwarded to controller.

Controller sends the packet to security

application for policy check. First it parses

the packet and check if it matches to policy

specified in firewall. As firewall has a policy

to block traffic from A to B (A-->B: Block).

The application enforces a rule through

controller to drop the packet and controller

install a flow rule in switch flow table to

drop all the incoming traffic from Host A to

Host B. This is how i can block and allow

flow in openflow through a security

application. It means through this app a

switch can work like a firewall i.e.

technology allows us to decide the functions

of a switch. As a result additional security

devices are not required in SDN as security

services can be enabled within the devices.

In traditional network another problem is

placement of firewall for optimized

coverage of security services. But it has

been nullified as any device in the network

can be turned into a security device.

IV CONCLUSION

i created four use cases and presented a

tabular discussion of several attack

parameters and their countermeasures to

identify SDN security issues.I used the same

use cases from the traditional network after

identifying the security issues for a

comparison of risk and security technology

in both networks.Comparative research has

led researchers to the conclusion that SDN

has provided traditional networks with new

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1773

attack surfaces.SDN, on the other hand,

gives you more control over the network,

automation, and flexibility than traditional

networks do.However, security solutions

have been presented to address SDN

security issues, including protection from

malicious applications, protection of the data

plane, protection from DoS attacks by data

plane switches, and protection of the

controller.Ryu controller and mininet

network emulator are included in the

framework that has been presented for the

development of an SDN security application

based on analysis.A proposed security

model that is based on recent research and

threat model analysis has been presented to

provide insights for improving

security.Furthermore, research into SDN

security is still in its infancy, and there is

still much to be done.I can find superior

SDN networks that will be significantly

more secure than traditional networks by

developing novel security techniques and

expanding on previous research to address

known issues.

REFERENCES

[1] M. Casado et al., “SANE: A protection

architecture for enterprise networks,” in

Proc. USENIX Security Symp., 2006, p. 10.

[2] M. Casado et al., “Ethane: Taking

control of the enterprise,” in ACM

SIGCOMM Comput. Commun. Rev., vol.

37, no. 4, pp. 1–12, Oct. 2007.

[3] N. McKeown et al., “OpenFlow:

Enabling innovation in campus networks,”

ACM SIGCOMM Comput. Commun. Rev.,

vol. 38, no. 2, pp. 69–74, Apr. 2008.

[4] R. R. Yadav, E. T. G. Sousa and G. R. A.

Callou, “Performance Comparison between

Virtual Machines and Docker Containers”,

IEEE Latin America Transactions, VOL. 16,

NO. 8, AUG. 2018, pp. 2282-2288.

[5] S. Jain et al., “B4: Experience with a

globally-deployed software defined

WAN,” in Proc. ACM SIGCOMM Conf.,

2013, pp. 3–14.

[6] Li Li, Wu Chou, Wei Zhou and Min

Luo, “ Design Patterns and Extensibility of

REST API for Networking Applications”,

IEEE, TNSM, 2015, 00814.

[7] S. Taha Ali et. al “A Survey of Securing

Networks using SDN”, IEEE transactions on

reliability, Vol 64, No. 3, 2015.

[8] Marc C. Dacier et al, “Security

Challenges and Opportunities of Software

Defined Networking”, in IEEE Computer

and Reliabilities Societies, 2017, pp.96-100.

[9] B. Ahmad et al. “Fingerprinting SDN

policy parameters : An Empirical Study”,

IEEE Access, Volume 8, 2020.

[10] D. Li, X. Hong, and J. Bowman,

“Evaluation of security vulnerabilities by

using ProtoGENI as a launchpad,” in Proc.

IEEEGLOBECOM, 2011, pp. 1–6.

[11] S. Shin and G. Gu, “Attacking

software-defined networks: The first

feasibility study,” in Proc. 2nd ACM

SIGCOMM Workshop Hot Topics Softw.

Defined Netw., 2013, pp. 165–166.

[12] L. Schehlmann, S. Abt, and H. Baier,

“Blessing or curse? Revisiting security

aspects of software-defined networking,” in

Proc. 10th Int. CNSM, 2014, pp. 382–387.

[13] S. Sezer et al., “Are we ready for SDN?

Implementation challenges for software-

defined networks,” IEEE Commun. Mag.,

vol. 51, no. 7, pp. 36–43, Jul. 2013.

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1774

[14] W. Han, H. Hu, and G.-J. Ahn, “LPM:

Layered policy management for software-

defined networks,” Data and Applications

Security and Privacy XXVIII. Berlin,

Germany: Springer-Verlag, 2014, pp. 356–
363.

[15] X. Wen, Y. Chen, C. Hu, C. Shi, and Y.

Wang, “Towards a secure controller

platform for OpenFlow applications,” in

Proc. 2nd ACM SIGCOMM Workshop Hot

Topics Softw. Defined Netw., 2013, pp.

171–172.

[16] S. Scott-Hayward, C. Kane, and S.

Sezer, “OperationCheckpoint: SDN

application control,” in Proc. 22nd IEEE

ICNP, 2014, pp. 618–623.

[17] P. Porras, S. Cheung, M. Fong, K.

Skinner, and V. Yegneswaran, Securing the

software-defined network control layer,” in

Proc. NDSS, San Diego, CA, USA, Feb.

2015, pp. 1–15.

[18] P. Berde et al., “ONOS: Towards an

open, distributed SDN OS,” in Proc.3rd

Workshop Hot Topics Softw. Defined

Netw., 2014, pp. 1–6.

[19] M. M. O. Othman and K. Okamura,

“Securing distributed control of software

defined networks,” Int. J. Comput. Sci.

Netw. Security, vol. 13, no. 9, pp. 5–14,

Sep. 2013.

[20] F. Botelho, A. Bessani, F. M. Ramos,

and P. Ferreira, “On the design of practical

fault-tolerant SDN controllers,” in Proc. 3rd

EWSDN, 2014, pp. 73–78.

[21] H. Mai et al., “Debugging the data

plane with anteater,” ACM SIGCOMM

Comput. Commun. Rev., vol. 41, no. 4, pp.

290–301, Aug. 2011.

[22] Ahmad, B. et al., “Fingerprinting SDN

policy parameters : An Empirical Study”,

IEEE Access, Volume 8, 2020.

[23] C. Jeong, T. Ha, J. Narantuya, H. Lim,

and J. Kim, “Scalable network intrusion

detection on virtual SDN environment,” in

Proc. IEEE 3rd Int. Conf. CloudNet, 2014,

pp. 264–265.

[24] S. A. Mehdi, J. Khalid, and S. A.

Khayam, “Revisiting traffic anomaly

detection using software defined

networking,” in Recent Advances in

Intrusion Detection. Berlin, Germany:

Springer-Verlag, 2011, pp. 161–180.

[25] R. Braga, E. Mota, and A. Passito,

“Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in Proc.

IEEE 35th Conf. LCN, 2010, pp. 408–415.

[26] J. Suh et al., “Implementation of

content-oriented networking architecture

(CONA): A focus on DDoS

countermeasure,” in Proc. European

NetFPGA Developers Workshop,

Cambridge, U.K., 2010, pp. 1–6.

[27] Purnima Murali Mohan et. al.,

“Towards resilient in-band control path

routing with malicious switch detection in

SDN”, IEEE COMSNETS, 2018, PP.9-16.

[28] Haifeng Zhou et. al., ”SDN-RDCD: A

Real-Time and Reliable Method for

Detecting Compromised SDN Devices”,

IEEE/ACM transactions on networking, vol.

26, no. 5, october 2018 pp. 2048-2061

[29] D. Kreutz, F. Ramos, and P. Verissimo,

“Towards secure and dependable software-

defined networks,” in Proc. 2nd ACM

SIGCOMM Workshop Hot Topics Softw.

Defined Netw., 2013, pp. 55–60.

[30] S. Shin et al., “FRESCO: Modular

composable security services for software-

defined networks,” in Proc. Netw. Distrib.

Security Symp., San Diego, CA, USA, 2013,

pp. 1–16.

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1775

[31] N. Gude et al., “NOX: Towards an

operating system for networks,” ACM

SIGCOMM Comput. Commun. Rev., vol.

38, no. 3, pp. 105–110, Jul. 2008.

[32] D. Erickson, “The beacon OpenFlow

controller,” in Proc. 2nd ACM SIGCOMM

Workshop Hot Topics Softw. Defined

Netw., 2013, pp. 13–18.

[33] A. Guha, M. Reitblatt, and N. Foster,

“Machine-verified network controllers,”

ACM SIGPLAN Notices, vol. 48, no. 6, pp.

483–494, Jun. 2013.

[34] S. H. Yeganeh and Y. Ganjali,

“Kandoo: A framework for efficient and

scalable offloading of control applications,”

in Proc. 1st Workshop Hot Topics Softw.

Defined Netw., 2012, pp. 19–24.

[35] N. Foster et al., “Frenetic: A network

programming language,” ACM SIGPLAN

Notices, vol. 46, no. 9, pp. 279–291, Sep.

2011.

[36] T. Koponen et al., “Onix: A distributed

control platform for large-scale production

networks,” in Proc. OSDI, 2010, vol. 10, pp.

1–6

[37] Seung Yeob Nam, Dongwon Kim and

Jeongeun Kim. “Enhanced ARP: Preventing

ARP Poisoning-Based Man-in-the-Middle

Attacks” IEEE Communications Letters,

Vol. 14, No. 2, February 2010, pp. 187-189.

[38] Songyi Liu, “MAC Spoofing Attack

Detection Based on Physical Layer

Characteristics in Wireless Networks” IEEE,

ICCEM, 2015.

[39] Timo Kiravuo, Mikko S¨arel¨a, and

Jukka Manner, “A Survey of Ethernet LAN

Security” IEEE Communications Surveys &

Tutorials, Vol. 15, No. 3, 2013,pp. 1477-

1491.

[40] A. Zaalouk, R. Khondoker, R. Marx,

and K. Bayarou, “OrchSec: An orchestrator-

based architecture for enhancing network-

security using network monitoring and SDN

control functions,” in Proc. IEEE NOMS,

2014, pp. 1–9.

[41] Pradeep Kumar Sharma and S.S Tyagi

“Improving Security through Software

Defined Networking (SDN): An SDN based

Model”, IJRTE, vol. 8, issue 4, 2019, pp.

295-300.

[42] Marcelo Ruaro , Luciano Lores Caimi ,

and Fernando Gehm Moraes, “SDN-Based

Secure Application Admission and

Execution for ManyCores”, IEEE Access,

volume 8, 2020, pp. 177296- 177306.

[43] D. Kreutz et al., “Software-defined

networking: A comprehensive survey,”

arXiv preprint arXiv:1406.0440, 2014.

[44] D. Yu, A. W. Moore, C. Hall, and R.

Anderson, “Authentication for resilience:

The case of SDN,” in ser. Security Protocols

XXI. Berlin, Germany: Springer-Verlag,

2013, pp. 39–44.

[45] P. Porras et al., “A security

enforcement kernel for OpenFlow

networks,” in Proc. 1st Workshop Hot

Topics Softw. Defined Netw., 2012, pp.

121–126.

[46] S. Shin et al., “Rosemary: A robust,

secure, and high-performance network

operating system,” in Proc. ACM SIGSAC

Conf. Comput. Commun. Security, 2014,

pp. 78–89.

[47] B. Chandrasekaran and T. Benson,

“Tolerating SDN application failures with

LegoSDN,” in Proc. 13th ACM Workshop

Hot Topics Netw., 2014, p. 22.

[48] G. Yao, J. Bi, Y. Li, et al., “On the

Capacitated Controller Placement Problem

in Software Defined Networks”, IEEE

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1776

Communications Letters,vol.18, no.8, 2014,

pp. 1339-1342.

[49] J. Liao, H. Sun, J. Wang, et al.,

“Density cluster based approach for

controller placement problem in large-scale

software defined

networkings”, Computer Networks, vol.112,

2017, pp. 24-35.

[50] H. Li, P. Li, S. Guo, et al., “Byzantine-

resilient secure software-defined networks

with multiple controllers”, Proc. IEEE

International Conference on

Communications, 2014, pp. 695-700.

[51] OpenFlow Switch Specification

Version 1.4, Open Network.

[52] K. Benton, L. J. Camp, and C. Small,

“OpenFlow vulnerability assessment,” in

Proc. 2nd ACM SIGCOMM Workshop Hot

Topics Softw. Defined Netw., 2013, pp.

151–152.

[53] Josy Elsa Varghese and Balachandra

uniyal, “An efficient IDS framework for

DDOS attacks in SDN environment”, IEEE

Access, 2021, pp. 69680-69699.

[54] Tooska Dargahi et. al., “A Survey on

the Security of Stateful SDN Data Planes”

IEEE Communications Surveys & Tutorials,

Vol. 19, No. 3, 2017, PP. 1701-1724.

[55] A. A. Z. SOARES et. al., “3AS:

Authentication, authorization, and

accountability for sdn-based smart grids ”,

IEEE Access, volume 9, 2021, pp. 88621-

88640

[56] Kevin Barros Costa et al., “Enhancing

Orchestration and Infrastructure

Programmability in SDN with

NOTORIETY”, IEEE Access, Volume 8,

2020, pp. 195487-195502.

[57] Basem Almadani , Abdurrahman Beg

and Ashraf Mahmoud, “DSF: A Distributed

SDN Control Plane Framework for the

East/West Interface” IEEE Access, Volume

9, 2021, pp. 26735-26754.

[58] Ahmed Sallam , Ahmed Refaey,and

Abdallah Shami, “On the Security

of SDN: A Completed Secure and Scalable

Framework using the Software-Defined

Perimeter”, IEEE Access, volume 7, 2019.

pp. 146577-146587

Journal of Engineering Sciences Vol 13 Issue 07,2022

0377-9254 www.jespublication.com Page 1777

